

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 598 (2000) 222-227

Journal ofOrgano metallic Chemistry

Direct displacement of chlorine or iodine in reactions of (Me₃Si)₃CSiRR'X with metal salts

Kazem D. Safa *, Mohammad G. Asadi, Abdolreza Abri, Ali Mohammadpour, Hadi Kiae

Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Received 1 December 1998; received in revised form 7 November 1999

Abstract

Direct nucleophilic displacement of halide X (X = Cl or I) takes place when the compounds $(Me_3Si)_3CSiRR'X$ with R = Me, R' = $(C_6H_4Me_{-p})$, $(C_6H_4OMe_{-p})$, CH_2 =CH R = Bu, R' = Cl, or R = Ph, R' = Ph are treated with solutions of KOCN, KSCN, KCN, or NaN₃ in CH₃CN or MeOH, and H₂O in DMSO, or CH₃CN. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Silicon; Steric Hindrance; Trisyl

1. Introduction

The effect of severe steric hindrance on direct nucleophilic attack at functional silicon centres bearing the bulky trisyl group (denoted here by Tsi) or a related group has allowed the observation of previously inaccessible mechanisms of reactions [1]. For example, unusual rearrangement and migration in TsiSiR₂X species take place through bridged silicocationic intermediates. When the steric hindrance at the functional silicon centres is reduced, or linear nucleophiles like N_3^- , SCN⁻, OCN⁻ and CN⁻ are used, direct biomolecular displacement takes place. Earlier work had indicated that nucleophilic substitution, while relatively easy for TsiSiMe₂X, was very slow for TsiSiPh₂I [2-5]. But we have now shown that under suitable conditions such substitution reactions provide a satisfactory route to TsiSiPh₂X and some related species.

We have also shown that with less hindered systems the chlorides can be satisfactorily used instead of iodides. For example, $TsiSiMe(CH=CH_2)Cl$ and $TsiSiBuCl_2$ undergo direct nucleophilic reactions to give the corresponding products. The chlorides (C_6H_4OMe -p)-SiMeHCl and (C_6H_4Me -p)SiMeHCl react with TsiLi to give trisyl derivatives containing a hydride substituent.

* Corresponding author.

The presence of even one hydride ligand reduces the steric hindrance considerably and we have seen that for such compounds nucleophilic substitution takes place fairly readily.

In this work we synthesised new compounds with different groups and did some nucleophilic reactions on them with linear nucleophiles, namely N_3^- , SCN⁻, OCN⁻ and CN⁻, to examine the ease of reactions on Si bearing the bulky trisyl group.

2. Results and discussion

In our earlier work we have shown that the synthesis of TsiSiAn₂I by the reaction of TsiSiAn₂H with ICl was unsuccessful [1]. An attempt to make TsiSi $(C_6H_4Me_p)_2F$ by reaction of TsiLi with $(C_6H_4Me_p)_2SiF_2$ was also unsuccessful. For that reason in order to reduce steric hinderance we have chosen methylanisyl and methyltolyl derivatives to prepare TsiSi $(C_6H_4OMe_p)MeI$ and TsiSi $(C_6H_4Me_p)MeI$, respectively and studied the reaction of the iodides with electrophiles, nucleophiles and alkoxides. When steric hinderance of the functional silicon centre is reduced or linear nucleophiles such as NCS⁻, NCO⁻, CN⁻ are used, such bimolecular displacement reactions take place and no rearrangement is observed.

E-mail address: g-asadi@ank.tabriz.ac.ir (K.D. Safa)

When Me is substituted with a bulky anisyl group in $TsiSi(C_6H_4OMe_p)_2H$ the iodide derivative $TsiSi(C_6H_4OMe_p)MeI$ was successfully prepared by the reaction of $TsiSi(C_6H_4OMe_p)MeH$ with ICl. So we think that by reducing steric hinderance around the Si centre, the cleavage of the Si–Aryl bond was not favoured.

2.1. Preparation of TsiSiRR'X

These compounds were obtained by reaction of TsiLi with (a) n-BuSiCl₃; (b) (C₆H₄OMe-p)SiMeHCl; (c) (C₆H₄Me-p)SiMeHCl; (d) CH₂=CHSiMeCl₂; (e) Ph₂SiF₂.

2.2. Reactions of TsiSiRR'X (R = Me, n-Bu, Ph, and $R' = p - C_6 H_4 OMe$, $p - C_6 H_4 Me$, Cl, $CH_2 = CH$)

(i) The butyl compound $TsiSiBuCl_2$ was only reacted with KSCN and KN_3 in CH_3CN . The diffuoride derivative of this compound was prepared and unlike other derivatives of trisyl compounds is a liquid.

(ii) The vinyl compound $TsiSiMe(CH=CH_2)Cl$ was found to react with KSCN, NaN_3 , KCN, and KOCN in CH_3CN to give $TsiSiMe(CH=CH_2)Y$ (Y = NCS, NCO, N₃, CN).

(iii) The methyltolyl and methylanisyl compounds $TsiSi(C_6H_4Me-p)MeI$, $TsiSi(C_6H_4OMe-p)MeI$ were reacted with KSCN in CH₃CN, and H₂O in DMSO, CH₃CN [6–9]. The hydrides $TsiSi(C_6H_4Me-p)MeH$, $TsiSi(C_6H_4OMe-p)MeH$ were subsequently made by the treatment of TsiLi with (C₆H₄Me-*p*)MeSiHCl and (C₆H₄OMe-*p*)MeSiHCl, respectively.

(iv) The diphenyl compound TsiSiPh₂I was found to react with KSCN, KOCN in CH₃CN containing crown ether and NaN₃ in MeOH containing crown ether. The reaction of TsiSiPh₂I with KSCN in CH₃CN was previously reported requiring 30 days [10], but we found that it to be complete in 3 days in a mixture of CH₃CN and 18-crown-6. We also found that TsiSiPh₂I did not react with KCN in MeOH. The reaction of the TsiSi(C₆H₄-Me-*p*)MeI, TsiSi(C₆H₄-OMe-*p*)MeI with H₂O, DMSO, CH₃N give the silanol derivatives, TsiSi(C₆H₄-Me-*p*)MeOH, TsiSi(C₆H₄-OMe-*p*)MeOH.

3. Experimental

3.1. Solvents and reagents

Reactions involving lithium metal, organolithium or organomagnesum reagents and $LiAlH_4$ were carried out under dry argon. Solvents were dried by standard methods.

3.2. Spectra

The ¹H-NMR spectra were recorded using an FT-NMR Bruker (100 MHz) and FT-NMR 90 MHz spectrometer with solutions in CDCl₃. The IR spectra were recorded on an FTIR, DR.8001-Shimadzu spectrometer. Mass spectra were obtained with a Finnigan-Mat model 8400, 70 eV. Melting points were determined with a 9100 Electrothermal apparatus.

3.3. Preparation of trisyldiphenylisocyanato silane TsiSiPh₂NCO

A mixture of TsiSiPh₂I (0.5 g, 0.93 mmol), KOCN (2 g, 24.7 mmol) and crown ether (0.2 g, 0.55 mmol) in CH₃CN (50 cm³) was refluxed for 16 days. The mixture was treated with methanol (20 cm³), *n*-hexane (40 cm³), and a little NaCl aqueous solution, washed several times with water, and the organic layer was separated, dried (MgSO₄), evaporated and the residue recrystallised from EtOH (78%); m.p. 178–179°C FTIR (KBr, cm⁻¹) ν (Si–NCO)2278.1, (C–Si) 1245.¹H-NMR (CDCl₃): 0.12 (s, 27H, Tsi), and 7.13–7.50 ppm (m, 10H, Aryl–H). *m/z* (EI): 440 (20%, [M–Me]⁺), 413 (38%, [M–NCO]⁺), 335 (100%, [M–Ph–SiMe]⁺), 247 (60%, [M–2Ph–CH₂SiC]⁺), 197 (38%, [M–Tsi–Si]⁺). (Found: C, 60.2; H, 8.1; N, 3.02, C₂₃H₃₇Si₄NO Calc.: C, 60.66; H, 8.13; N, 3.07%).

3.4. Preparation of trisylazidodiphenylsilane TsiSiPh₂N₃

A mixture of TsiSiPh₂I (0.5 g, 0.93 mmol), NaN₃ (2 g, 30.7 mmol) and crown ether (0.2 g, 0.55 mmol) in MeOH (50 cm³) was refluxed for 14 days. The mixture was treated with methanol (20 cm^3), *n*-hexane (40 cm^3), and a little NaCl aqueous solution, washed several times with water, and the organic layer was separated, dried (MgSO₄), evaporated and the residue recrystallized from EtOH. (83%); m.p. 137.5-138.5°C. FTIR (KBr, cm^{-1}), $v(Si-N_3)$ 2143.3. ¹H-NMR (CDCl₃): 0.112 (s, 27H, Tsi), and 7.12-7.65 ppm (m, 10 H, Aryl-H). m/z (EI): 440 (8%, [M-Me]⁺), 397 (2%, $[M-N_3]^+$), 335 (41%, $[M-Ph-SiMe]^+$), 247 (25%, [M-2Ph-CH₂SiC]⁺), 197 (12%, [M-Tsi-Si]⁺), 175 (15%,[M-2(SiMe₃)-PhMe-3N]⁺). (Found: C, 58.2; H, 8.4; N, 8.7. C₂₂H₃₇Si₄N₃ Calc.: C, 58.02; H, 8.13; N, 9.2%).

3.5. Preparation of trisyldiphenylisothiocyanatosilane TsiSiPh₂NCS

A mixture of TsiSiPh₂I (0.5 g, 0.93 mmol), KSCN (0.9 g, 9.26 mmol) and crown ether (0.02 g, 0.05 mmol) in CH₃CN (50 cm³) was refluxed for 3 days. The mixture was treated with methanol (20 cm³), *n*-hexane (40 cm³), and a little NaCl, washed several times with

water, the organic layer was separated, dried (MgSO₄), evaporated and the residue recrystallised from EtOH. (87%); m.p. 139–141°C. FTIR (KBr, cm⁻¹), (Si–NCS) 2073.8. ¹H-NMR (CDCl₃): 0.99 (s, 27H, Tsi), and 7.12–7.62 ppm (m, 10H, Aryl–H). m/z (EI): 456 (48%, [M–Me]⁺), 397 (40%, [M–Me₃SiH]⁺), 378 (72%, [M–Ph–CH₄]⁺), 340 (15%, [M–Me₃Si–NCS]⁺), 325 (15%, [M–(Me₃Si)₂]⁺), 145 (11%, [M–SiMe₃–CSiPh₂-NCS]⁺), 135 (85%, [SiMe₂Ph]⁺,), 135 (85%, [M–Tsi–SiPh]⁺). (Found: C, 58.3; H, 7.9; N, 3.2. $C_{23}H_{37}Si_4SN$ Calc.: C, 58.5; H, 7.8; N, 3.0%).

3.6. Preparation of trisylmethylvinylchlorosilane TsiSi(CH₃)(CH=CH₂)Cl

Dichloromethylvinylsilane $Cl_2Si(CH_3)(CH=CH_2)$ (7.05 g, 50 mmol) was added dropwise with stirring to a solution of TsiLi (50 mmol) in THF (50 cm³) that had been made by reaction of TsiH (11.5 g, 50 mmol) with MeLi (0.84 g, 120 mmol). The mixture was refluxed for 45 min. Then aqueous NH₄Cl was added and the organic compound was extracted with Et₂O. The extract was dried (MgSO₄), filtered and evaporated, and the residue recrystallized from EtOH, then purified by column chromatography (silica gel, *n*-hexane as eluant) to give TsiSi(CH₃)(CH=CH₂)Cl (55%), m.p. 340°C FTIR (KBr, cm⁻¹), (=C–H) 3061.5, (C–H aliphatic) 2962.2, 2987.2, (C=C) 1592.5. ¹H-NMR (CDCl₃): 0.31 (s, 27H, Tsi), 0.702 (s, 3H, Si-Me), and 5.7-6.7 ppm (m, 3H, vinyl). m/z (EI) 321 (38%, $[M-Me]^+$), 301 (4%, [M-Cl]⁺), 213 (100%, [M-Me₃SiCl-Me]⁺), 105(5%, [M-Tsi]⁺). (Found: C, 46.4; H, 9.7. C₁₃H₃₃Si₄Cl Calc.: C, 46.4; H, 9.8%).

3.7. Preparation of trisylisothiocyanatomethylvinylsilane TsiSi(CH₃)(CH=CH₂)NCS

A mixture of TsiSi(CH₃)(CH=CH₂)Cl (1 g, 3 mmol), KSCN (3.5 g, 36 mmol) in CH₃CN (150 cm³), was refluxed for 3 h. The mixture was treated with petroleum ether and water, and the organic layer separated, dried (MgSO₄), evaporated and the residue was recrystallised from EtOH. (80%), m.p. 308°C. FTIR (KBr, cm⁻¹), (Si–NCS), 2076, ¹H NMR (CDCl₃): 0.29 (s, 27H, Tsi), 0.567 (s, 3H, Si–Me) and 5.7–6.3 ppm (m, 3H, vinyl). m/z (EI): 344 (98%, [M–Me]⁺), 301 (2%, [M–NCS]⁺) 285 (39%, [M–Me₃Si]⁺), 256 (15%, [M–Me₃Si–Me]⁺), 213 (46%, [M–(Me₃Si)2]⁺), 154 (19%, [M–(Me₃Si)₂–NCS]⁺). (Found: C, 46.2; H, 8.9; N, 3.7. Cl₄H₃₃Si₃NS Calc.: C, 46.9; H, 9.2; N, 3.9%).

3.8. Preparation of trisylazidomethylvinylsilane TsiSi(CH₃)(CH=CH₂)N₃

A mixture of $TsiSi(CH_3)(CH=CH_2)Cl$ (1 g, 3 mmol), NaN₃ (2.8 g, 43.4 mmol) in CH₃CN (150 cm³) was refluxed for 48 h. The mixture was treated with diethyl ether and water, the organic layer separated, dried (MgSO₄), evaporated and the residue recrystallised from EtOH (79%), m.p. 275°C. FTIR (KBr, cm⁻¹), (Si–N₃) 2139.4, ¹H-NMR (CDCl₃): 0.27 (s, 27 H, Tsi), 0.57 (s, 3H, Si–Me) and 5.7–6.5 ppm (m, 3H, CH=CH₂). m/z (EI): 328 (12%, [M–Me]⁺), 284 (8%, [M–N₃–CH₄]⁺), 228 (14%, [M–Me₃SiN₃]⁺), 200 (18%, [M–Me₃SiN₃–(CH=CH₂)]⁺).

3.9. Preparation of trisylcyanidomethylvinylsilane TsiSi(CH₃)(CH=CH₂)CN

A mixture of TsiSi(CH₃)(CH=CH₂)Cl (1 g, 3 mmol), KCN (2 g, 43.4 mmol) in CH₃CN (150 cm³) was refluxed for 38 h. The mixture was treated with diethyl ether and water, the organic layer separated, dried (MgSO₄), evaporated, and purified by column chromatography (Silicagel, *n*-hexane as eluant). (87%); m.p. 328°C. FTIR (KBr, cm⁻¹), (Si–CN) 2185.7, ¹H-NMR (CDCl₃): 0.33 (s, 27H, Tsi), 0.62 (s, 3H, Si–Me) and 5.6–6.4 ppm (m, 3H, vinyl). m/z (EI): 312 (38%, [M–Me]⁺), 285 (28%, [M–(CH=CH₂)–Me]⁺), 224 (24%, [M–Me₃Si–2Me]⁺), 213 (99%, [M–Me₃Si–Me–CN]⁺), 201 (46%, [M–Tsi–2Me]⁺), 155 (33%, [M–(Me₃Si)₂– CN]⁺).

3.10. Preparation of trisylisocyanatomethylvinylsilane TsiSi(CH₃)(CH=CH₂)NCO

A mixture of TsiSi(CH₃)(CH=CH₂)Cl (1 g, 3 mmol), KOCN (3.5 g, 44 mmol) in CH₃CN (150 cm³) was refluxed for 30 h. The mixture was treated with diethyl ether and water, separated the organic layer, dried $(MgSO_4)$, evaporated, and the residue recrystallised from EtOH. (78%), m.p. 324°C. FTIR (KBr, cm⁻¹), (Si-NCO) 2284, ¹H-NMR (CDCl₃): 0.277 (s, 27H, Tsi), 0.52 (s, 3H, Si-Me) and 5.5-6.5 ppm (m, 3H, vinyl). m/z(EI): 328 (15%, [M–Me]⁺), 285 (10%, [M-NCO-CH₄]⁺), 240 (20%, [M-Me₃Si-2Me]⁺), 213 (58%, [M-Me₃SiNCO-Me]⁺), 201 (20%, [M-Tsi-2Me]⁺). (Found: C, 47.2; H, 9.5; N, 3.9, C₁₄H₃₃Si₃NO Calc.: C, 49.1; H, 9.6; N, 4%).

3.11. Preparation of trisyl(p-methylphenyl)methylsilane $TsiSi(C_6H_4Me-p)MeH$

 (C_6H_4Me-p) SiMeHCl (8.52 g, 50 mmol) was added dropwise with stirring to a solution of TsiLi (50mmol)in THF (100 cm³) that had been made by reaction of TsiH (11.5 g, 60 mmol) with MeLi (0.84 g, 120 mmol). The mixture was refluxed for 4 h. The aqueous NH₄Cl was added and the organic compound was extracted with Et₂O.The extract was dried (MgSO₄), filtered, evaporated, and the residue recrystallised from EtOH and was purified with preparative TLC (silica gel, *n*-hexane as eluant), (45%), m.p. 107–108°C. FTIR (KBr, cm⁻¹), (Si–H) 2107.7, ¹H-NMR (CDCl₃) 0.21 (s, 27H, Tsi), 0.44 (d, 3H, Si–Me), 2.33 (s, 3H, Me–aryl), 4.58 (q, 1H, Si–H), 7.06–7.66 ppm (m, 4H, aryl-H). m/z (EI) 366 (2%, [M]⁺), 365 (4%, [M–H]⁺), 351 (18%, [M–Me]⁺), 275 (5%, [M–tolyl]⁺), 261 (22%, [M–tolyl–Me]⁺), 73(100), 45 (18). (Found: C, 58.5; H, 10.2. $C_{18}H_{38}Si_4$ Calc.: C, 59.0; H, 10.3%).

3.12. Preparation of trisyl(p-methylphenyl)methyliodosilane TsiSi(C₆H₄Me-p)MeI

A solution of iodine monochloride (0.24 g, 1.4 mmol), in carbon tetrachloride (20 cm³), was added dropwise to TsiSi(C_6H_4Me -p)MeH (0.5 g, 10 mmol) in carbon tetrachloride (10 cm³) at room temperature. When the addition was complete, the solvent was removed and the solid residue was recrystallised from EtOH to yield TsiSi(C_6H_4Me -p)MeI, (90%), m.p. 179°C. FTIR (KBr, cm⁻¹), (C–Si) 1245, 850, ¹H-NMR (CDCl₃), 0.328 (s, 27H, Tsi), 1.38 (s, 3H, Me–Si) and 2.35 ppm (s, 3H, Me–Aryl). m/z (EI): 477(10%, [M–Me]⁺), 386 (5%, [M–Me–tolyl]⁺), 365 (90%, [M–I]⁺). (Found: C, 44.4; H, 7.6. $C_{18}H_{37}$ ISi₄ Calc.: C, 43.9; H, 7.5%).

3.13. Preparation of trisyl(p-methylphenyl)hydroxymethylsilane TsiSi(C_6H_4Me -p)MeOH

A mixture of $TsiSi(C_6H_4Me-p)MeI$ (0.5 g, 1.3 mmol), DMSO (25 cm³), H₂O (4 cm³), and CH₃CN (12 cm³) was refluxed for 24 h. The solution was treated with water and petroleum ether, dried (Na₂SO₄) and evaporated. A pure product was obtained by preparative TLC (silica gel, 1:1, cyclohexane: dichloromethane as eluant), (75%), m.p. 150°C. FTIR (KBr, cm⁻¹), (Si-OH) 3600, (C-Si) 1245, ¹H-NMR (CDCl₃) 0.25 (s, 27H, Tsi), 0.59 (s, 3H, Me-Si), 1.76 (s, b, 1H, OH), 2.34 (s, 3H, Me-aryl) and 7.0-7.7 ppm (m, 4H, aryl-H). (EI): 367 $(30\%, [M-Me]^+), 352 (18\%,$ m/z[M-Me-tolyl]⁺). (Found: C, 56.6; H, 9.9. C₁₈H₃₈OSi₄ Calc.: C, 56.5; H, 9.9%).

3.14. Preparation of trisyl (p-methylphenyl)methylisothiocyanatosilane TsiSi(C₆H₄Me-p)MeNCS

A mixture of TsiSi(C₆H₄Me-*p*)MeI (0.5 g, 1.1 mmol) with KSCN (1 g, 10 mmol) in CH₃CN (50 cm³) was refluxed for 10 days. Then it was treated with water and petroleum ether (40–60), the organic layer separated, dried (Na₂SO₄) and evaporated. The residue recrystallised from EtOH. (70%), m.p. 128°C. FTIR (KBr, cm⁻¹), (Si–NCS) 2080, (Si–C) 1245, ¹H-NMR (CDCl₃) 0.27 (s, 27H, Tsi), 0.73 (s, 3H, Me–Si), and 2.36 ppm (s, 3H, Me–tolyl). m/z (EI): 408 (20%, [M–Me]⁺), 350 (35%, [M–Me₃Si]⁺), 377 (5%, [M–2(Me₃Si)]⁺), 365

3.15. Preparation of trisylbutyldichlorosilane TsiSiBuCl₂

n-BuSiCl₃ (9.575 g, 50 mmol) was added dropwise with stirring to a solution of TsiLi (50 mmol) in THF (50 cm³) that had been made by reaction of TsiH (11.5 g, 50 mmol) with MeLi (0.84 g, 120 mmol). The mixture was refluxed for 30 min, then aqueous NH₄Cl was added and the organic layer was extracted with Et₂O. The extract was dried (MgSO₄), filtered, evaporated, and the residue recrystallised from EtOH. A pure product was obtained by preparative TLC (silica gel, hexane as eluant) to give TsiSiBuCl₂ (48%), m.p. 119°C. FTIR (KBr, cm⁻¹), (C-H aliphatic) 2961.2, (C-Si) 1250, 850, (Si-Cl) 675.2, ¹H-NMR (CDCl₃) 0.347 (s, 27H, Tsi) and 0.4-1.5 ppm (m, 9H, Bu). m/z (EI): 386 (5%, [M]⁺), 371 (95%, [M-Me]⁺), 315 (65%, [M-2Cl]⁺), 221 (70), 73 (87), 45 (38). (Found: C, 42.6; H, 9.3. C₁₀H₃₆Cl₂Si₄ Calc.: C, 43.1; H, 9.3%).

3.16. Preparation of trisylbutyldiisothiocyanatosilane $TsiSiBu(SCN)_2$

A mixture of TsiSiBuCl₂ (1.5 g, 3.8 mmol), KSCN (3.5 g, 36 mmol) and CH₃CN (100 cm³) was refluxed for 48 h. The mixture was treated with water and Et₂O, the organic layer separated, dried (MgSO₄), and evaporated. A pure product was obtained by preparative TLC (silica gel, *n*-hexane as eluent), (60%), m.p. 100°C. FTIR (KBr, cm⁻¹), (Si–NCS)2100, ¹H-NMR (CDCl₃) 0.348 (s, 27H, Tsi), and 0.5–1.5 ppm (m, 9H, Bu). m/z (EI): 417 (100%, [M–Me]⁺), 374 (60%, [M–SCN]⁺), 361 (20), 244 (42), 73 (82), 45 (10). (Found: C, 44.1; H, 8.5; N, 6.0. C₁₆H₃₆S₂N₂Si₄ Calc.: C, 44.4; H, 8.3; N, 6.0%).

3.17. Preparation of trisylbutyldiazidosilane $TsiSiBu(N_3)_2$

A mixture of TsiSiBuCl₂ (1.5 g, 3.8 mmol) and NaN₃ (2.8 g, 43.4 mmol) in CH₃CN (100 cm³) was refluxed for 96 h. The mixture was treated with *n*-hexane and water, the organic layer was separated, dried (MgSO₄), evaporated, and the residue recrystallised from EtOH. A pure product was obtained by preparative TLC (silica gel, *n*-hexane as eluant), (40%), m.p. 136°C. FTIR (KBr, cm⁻¹), (Si–N₃) 2120, ¹H-NMR (CDCl₃) 0.304 (s, 27H, Tsi) and 0.5–1.5 ppm (m, 9H, Bu). *m/z* (EI): 385.5 (18%, [M–Me]⁺), 358.5 (100%, [M–N₃]⁺), 330 (25), 172 (40), 73 (30), 45 (5). (Found: C, 40.3; H, 9.0; N, 20.4. C₁₄H₃₆N₆Si₄ Calc.: C, 41.9; H, 9.0; N, 20.9%).

3.18. Preparation of trisyl (p-methoxy phenyl) methylsilane TsiSi (C_6H_4OMe -p)MeH

(C₆H₄OMe-*p*)SiMeHCl (9.3 g, 50 mmol) was added dropwise with stirring to a solution of TsiLi (50 mmol) in THF (100 cm³) that had been made by reaction of TsiH (11.5 g, 60 mmol) with MeLi (0.84 g, 120 mmol). The mixture was refluxed for 4 h, the aqueous NH₄Cl was added and the organic material was extracted with Et₂O. The extract dried (Na₂SO₄), filtered and evaporated, and the residue recrystallised from EtOH, then was purified by preparative TLC (silica gel, n-hexane as eluant), (40%) m.p. 107-108°C. FTIR (KBr, cm⁻¹), (Si-H) 2107.7, ¹H-NMR (CDCl₃) 0.19 (s, 27 H, Tsi), and 0.42 (d, 3H, Me-Si), and 3.79 (s, 3H, MeO-anisole), and 4.57 (q, 1H, Si-H), and 6.50-7.50 (m, 4 H, aryl-H). m/z (EI): 382 (5%, [M]⁺), 367 (58%, [M–Me]⁺), 274 (35%, [M–anisole]⁺), 260 (5%, [M-anisole-Me]⁺), 201 (27%, [M-anisole-SiMe₃]⁺). (Found: C, 54.0; H, 10.0. C₁₈H₃₈OSi₄ Calc.: C, 56.5; H, 9.9%).

3.19. Preparation of trisyl (p-methoxyphenyl) methyliodosilane TsiSi $(C_6H_4OMe-p)MeI$

A solution of iodine monochloride (0.93 g, 6 mmol) in carbon tetrachloride (10 cm³) was added dropwise to one of TsiSi(C₆H₄OMe-*p*)MeH (1.4 g, 4 mmol) in carbon tetrachloride (20 cm³) at room temperature. When the addition was complete the solvent was removed and the solid product was recrystallised from EtOH to yield TsiSi(C₆H₄OMe-*p*)MeI (90%), m.p. 182°C. FTIR (KBr, cm⁻¹), (Si–C) 1245, ¹H-NMR (CDCl₃) 0.22 (s, 27H, Tsi), 1.30 (s, 3H, Si–Me), 3.70 (s, 3H, MeO–anisole), and 6.5–7.5 ppm (m, 4H, aryl–H). *m/z* (EI): 493 (4%, [M–Me]⁺), 401 (15%, [M–anisole]⁺), 381 (65%, [M–I]⁺), 366 (8%, [M–Me–I]⁺), 362 (7%, [M–Me–3(Me₃Si)]⁺), 277 (12%, [M–Tsi]⁺). (Found: C, 42.3; H, 7.3. C₁₈H₃₇IOSi₄ Calc.: C, 42.5; H, 7.3%).

3.20. Preparation of trisyl (p-methoxyphenyl)methylisothiosyanato silane $TsiSi(C_6H_4OMe-p)MeNCS$

A mixture of TsiSi ($C_6H_4OMe_p$)MeI (0.1 g, 1 mmol), KSCN (0.1 g, 1 mmol) and CH₃CN (50 cm³) was refluxed for 10 days, then was treated with water and petroleum ether (40–60), the organic layer seperated, dried (Na₂SO₄) and evaporated. The residue recrystallised from EtOH (50%).m.p. 130°C. FTIR (KBr, cm⁻¹), (Si–NCS) 270, (Si–C) 1245, ¹H-NMR (CDCl₃) 0.2220 (s, 27H, Tsi), 1.2020 (s, 3H, Si–Me), 3.6020 (s, 3H, MeO–anisole), 6.5–7.5 (m, 4H, aryl–H) *m/z* (EI): 439 (3%, [M]⁺), 424 (65%, [M–Me]⁺), 408 (3%, [M–OMe]⁺), 381 (20%, [M–SCN]⁺), 366 (14%, [M–SiMe₃]⁺), 365 (45%, [M–SiMe₂–O]⁺).

3.21. Preparation of trisyldichloro (p-methoxyphenyl)silane TsiSi $(C_6H_4OMe-p)Cl_2$

(C₆H₄OMe-*p*)SiCl₃ (12 g, 50 mmol) was added dropwise with stirring to a solution of TsiLi (50 mmol) in THF (100 cm³) that had been made by reaction of TsiH (11.5 g, 50 mmol) with Li (0.84 g, 120 mmol). The mixture was refluxed for 4 h, the aqueous NH₄Cl was added and the organic material was extracted with Et₂O. The extract dried (Na₂SO₄), filtered, evaporated and the residue recrystallised from EtOH, then sublimed at 100°C/0.1 mmHg, (60%) m.p. 165°C. FTIR (KBr, cm⁻¹), (Si-C) 1245, ¹H-NMR (CDCl₃) 0.3160 (s, 27H, Tsi), 3.8254 (s, 3H, OMe-anisole), 6.9261 (m, 4H, C_6H_4). m/z (EI): 368 (5%, [M]⁺), 367 (1.3%, [M–H]⁺), 353 (96%, [M-Me]⁺), 351 (85%, [M-Me-2H]⁺), 337 $(4\%, [M-OMe]^+), 277(35\%, [M-(Me_3Si)-CH_4-2H]^+),$ 260 (25%, [M-Ar-H] +), 187 (16%, $[M-3(Me_3Si) -$ Ar-H]+). (Found: C, 46.5; H, 7.8. $C_{17}H_{34}Cl_2OSi_4$ Calc.: C, 46.6; H, 7.8%).

3.22. Preparation of trisyldiisothiocyanato-(p-methoxyphenyl)silane TsiSi(C₆H₄OMe-p)(NCS)₂

A mixture of TsiSi $(C_6H_4OMe_p)Cl_2$ (0.3 g, 0.6 mmol), KSCN (0.1 g, 1 mmol) and CH_3CN (50 cm³) was refluxed for 10 days. Then was treated with water and petroleum ether (40–60), the organic layer separated, dried (Na₂SO₄) and evaporated. The residue recrystallised from EtOH (40%) m.p. 130°C. FTIR (KBr, cm⁻¹), (Si–NCS) 2070, (Si–C) 1245, ¹H-NMR (CDCl₃) 0.2398 (s, 27H, Tsi), 3.7920 (s, 3H, MeO–anisole), and 6.8–7.8 ppm (m,4H, aryl–H). *m/z* (EI): 482 (3%, [M]⁺), 467 (33%, [M–Me]⁺), 409 (28%, [M–SCN–Me]⁺), 351 (5% [M–(SCN)₂–Me]⁺). (Found: C, 46.6; H, 7.8; N, 5.8. C₁₉H₃₄N₂OS₂Si₄ Calc.: C, 47.3; H, 7.00; N, 5.8%).

Acknowledgements

We thank Dr P.D. Lickiss and Professor C. Eaborn for helpful comments.

References

- K.D. Safa, A. Asadi, M. Sargordan, J. Organomet. Chem. 545 (1997) 61.
- [2] S.A.I. Al-Shali, C. Eaborn, J. Organomet. Chem. 246 (1983) C34.
- [3] Y.Y. El-Kaddar, C. Eaborn, P.D. Lickiss, J. Organomet. Chem. 460 (1993) 7.
- [4] S.A.I. Al-Shali, C. Eaborn, F.A. Fattah, S.T. Najim, J. Chem. Soc. Chem. Commun. (1984) 318.

- [5] D.B. Azarian, C. Eaborn, P.D. Lickiss, J. Organomet. Chem. 328 (1987) 255.
- [6] S.S. Dua, C. Eaborn, J. Organomet. Chem. 204 (1981) 21.
- [7] C. Eaborn, P.B. Hitchcock, K.D. Safa, J. Organomet. Chem. 222 (1981) 187.
- [8] R.I. Damja, C. Eaborn, J. Organomet. Chem. 290 (1985) 267.
- [9] S. Dua, C. Eaborn, D.A.R. Happer, S.P. Hopper, K.D. Safa, D.R.M. Walton, J. Organomet. Chem. 178 (1979) 75.
- [10] C. Eaborn, F.A. Fattah, J. Oganomet. Chem. 396 (1990) 1.